10 [9]--Karl C. Rubin, Table of $A^{(k)}(n)$, Woodrow Wilson High School, Washington, D. C., 1973, ms. of 4 pages deposited in the UMT file.

This is an extension of Wagstaff's table [1] of $A^{(k)}(n)$. This is the cardinality of the largest subset of the natural numbers 1 to n wherein no k numbers are in arithmetic progression. Wagstaff computed these for $k=3(1) 8$ and for all $n=1,2, \cdots$ up to

$$
\begin{array}{lll}
A^{(3)}(53)=17, & A^{(4)}(52)=26, & A^{(5)}(74)=48 \\
A^{(6)}(52)=38, & A^{(7)}(53)=42, & A^{(8)}(57)=46
\end{array}
$$

Here, $k=6(1) 8$ are extended up to

$$
A^{(6)}(80)=55, \quad A^{(7)}(94)=72, \quad A^{(8)}(80)=64
$$

using Wagstaff's method [2] on a SPC-16 minicomputer. The ratios

$$
A^{(k)}(n) / n
$$

for these three k have therefore been only reduced slightly. The conjecture is that they $\rightarrow 0$ as $n \rightarrow \infty$.

The author suggests that a further extension is "somewhat impractical" since " $A^{(6)}(80)=55$ ran for several nights."
D. S.

1. Samuel S. Wagstaff, Jr., Math. Comp., v. 26, 1972, pp. 767-771.
2. S. S. Wagstaff, Jr., Math. Comp., v. 21, 1967, pp. 695-699.

11 [9].-Hugh Williams, Larry Henderson \& Ken Wright, Two Related Quadratic Surds Having Continued Fractions with Exceptionally Long Periods, University of Manitoba, 1973, 177 computer sheets deposited in the UMT file.

It was known [1], [2] that the prime

$$
p=26437680473689
$$

has two properties. (A) All numbers <151 are quadratic residues of p. (B) The class number $h(p)$ of $Q(\sqrt{ } p)$ equals 1 . It follows that the periodic continued fractions

$$
\begin{equation*}
\frac{1}{2}(\sqrt{ } p-5141757)=\frac{1}{1}+\frac{1}{3}+\frac{1}{940}+\frac{1}{3}+\cdots \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{ } p-5141758=\frac{1}{1}+\frac{1}{1}+\frac{1}{1880}+\frac{1}{1}+\cdots \tag{2}
\end{equation*}
$$

